6. Analyzing RCT reemployment experiment#
6.1. Data#
In this lab, we analyze the Pennsylvania re-employment bonus experiment, which was previously studied in “Sequential testing of duration data: the case of the Pennsylvania ‘reemployment bonus’ experiment” (Bilias, 2000), among others. These experiments were conducted in the 1980s by the U.S. Department of Labor to test the incentive effects of alternative compensation schemes for unemployment insurance (UI). In these experiments, UI claimants were randomly assigned either to a control group or one of five treatment groups. Actually, there are six treatment groups in the experiments. Here we focus on treatment group 4, but feel free to explore other treatment groups. In the control group the current rules of the UI applied. Individuals in the treatment groups were offered a cash bonus if they found a job within some pre-specified period of time (qualification period), provided that the job was retained for a specified duration. The treatments differed in the level of the bonus, the length of the qualification period, and whether the bonus was declining over time in the qualification period; see http://qed.econ.queensu.ca/jae/2000-v15.6/bilias/readme.b.txt for further details on data.
# install.packages("librarian", quiet = T)
librarian::shelf(tidyverse, lmtest, sandwich, broom, hdm, quiet = T)
## loading the data
Penn <- as_tibble(read.table("https://github.com/d2cml-ai/14.388_r/raw/main/Data/penn_jae.dat", header=T ))
n <- dim(Penn)[1]
p_1 <- dim(Penn)[2]
Penn <- filter(Penn, tg == 4 | tg == 0)# subset(Penn, tg==4 | tg==0)
attach(Penn)
T4 <- (Penn$tg==4)
summary(T4)
Mode FALSE TRUE
logical 3354 1745
glimpse(Penn)
Rows: 5,099
Columns: 23
$ abdt <int> 10824, 10824, 10747, 10607, 10831, 10845, 10831, 10859, 105…
$ tg <int> 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0,…
$ inuidur1 <int> 18, 1, 27, 9, 27, 27, 9, 27, 15, 28, 12, 22, 18, 1, 7, 18, …
$ inuidur2 <int> 18, 1, 27, 9, 27, 27, 9, 27, 15, 11, 12, 22, 18, 1, 7, 18, …
$ female <int> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,…
$ black <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
$ hispanic <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
$ othrace <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ dep <int> 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 0,…
$ q1 <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ q2 <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,…
$ q3 <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,…
$ q4 <int> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
$ q5 <int> 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,…
$ q6 <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
$ recall <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ agelt35 <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
$ agegt54 <int> 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,…
$ durable <int> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
$ nondurable <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,…
$ lusd <int> 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0,…
$ husd <int> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ muld <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,…
6.1.1. Model#
To evaluate the impact of the treatments on unemployment duration, we consider the linear regression model:
where \(Y\) is the log of duration of unemployment, \(D\) is a treatment indicators, and \(W\) is a set of controls including age group dummies, gender, race, number of dependents, quarter of the experiment, location within the state, existence of recall expectations, and type of occupation. Here \(\beta_1\) is the ATE, if the RCT assumptions hold rigorously.
We also consider interactive regression model:
where \(W\)’s are demeaned (apart from the intercept), so that \(\alpha_1\) is the ATE, if the RCT assumptions hold rigorously.
Under RCT, the projection coefficient \(\beta_1\) has the interpretation of the causal effect of the treatment on the average outcome. We thus refer to \(\beta_1\) as the average treatment effect (ATE). Note that the covariates, here are independent of the treatment \(D\), so we can identify \(\beta_1\) by just linear regression of \(Y\) on \(D\), without adding covariates. However we do add covariates in an effort to improve the precision of our estimates of the average treatment effect.
6.1.2. Analysis#
We consider
classical 2-sample approach, no adjustment (CL)
classical linear regression adjustment (CRA)
interactive regression adjusment (IRA)
and carry out robust inference using the estimatr R packages.
6.2. Carry out covariate balance check#
This is done using “lm_robust” command which unlike “lm” in the base command automatically does the correct Eicher-Huber-White standard errors, instead othe classical non-robus formula based on the homoscdedasticity command.
m <- lm(T4 ~ (female + black + othrace + factor(dep) + q2 +q3 + q4 +
q5 + q6 + agelt35 + agegt54 + durable + lusd + husd)^2, data = Penn)
coeftest(m, vcov = vcovHC(m, type="HC1"))
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.32145725 0.16125607 1.9935 0.0462656 *
female 0.10423328 0.13624779 0.7650 0.4442914
black 0.07164803 0.08288534 0.8644 0.3873969
othrace 0.02801517 0.40496815 0.0692 0.9448502
factor(dep)1 -0.07363340 0.20094637 -0.3664 0.7140574
factor(dep)2 -0.10854072 0.15754307 -0.6890 0.4908810
q2 -0.02667937 0.16255836 -0.1641 0.8696419
q3 -0.00567387 0.16218178 -0.0350 0.9720934
q4 0.04334425 0.16233956 0.2670 0.7894821
q5 0.09386458 0.16157184 0.5809 0.5613028
q6 -0.22156423 0.15984049 -1.3862 0.1657604
agelt35 -0.10923976 0.13323486 -0.8199 0.4123101
agegt54 -0.43668630 0.13581268 -3.2154 0.0013111 **
durable -0.12500967 0.17083793 -0.7317 0.4643590
lusd 0.11428653 0.06824019 1.6748 0.0940422 .
husd 0.09467997 0.07364116 1.2857 0.1986096
female:black 0.08886596 0.04381635 2.0281 0.0425983 *
female:othrace -0.41350947 0.16481280 -2.5090 0.0121400 *
female:factor(dep)1 0.05547519 0.04647943 1.1935 0.2327135
female:factor(dep)2 0.04544801 0.04053454 1.1212 0.2622494
female:q2 -0.18880964 0.13587953 -1.3895 0.1647314
female:q3 -0.16526367 0.13565839 -1.2182 0.2231926
female:q4 -0.17632875 0.13530942 -1.3032 0.1925829
female:q5 -0.20321654 0.13480991 -1.5074 0.1317636
female:q6 -0.04271603 0.14234389 -0.3001 0.7641207
female:agelt35 0.07342181 0.03004676 2.4436 0.0145765 *
female:agegt54 0.02612867 0.05090915 0.5132 0.6078053
female:durable 0.01975687 0.04372711 0.4518 0.6514168
female:lusd 0.00206955 0.03395251 0.0610 0.9513982
female:husd 0.01178851 0.03747209 0.3146 0.7530827
black:factor(dep)1 -0.11726334 0.06797874 -1.7250 0.0845893 .
black:factor(dep)2 -0.02222434 0.06342353 -0.3504 0.7260446
black:q2 -0.03349395 0.08989631 -0.3726 0.7094737
black:q3 -0.19656696 0.08506268 -2.3108 0.0208818 *
black:q4 -0.12493576 0.08604499 -1.4520 0.1465694
black:q5 -0.20988793 0.08398490 -2.4991 0.0124822 *
black:agelt35 0.06226414 0.04512447 1.3798 0.1677004
black:agegt54 0.05126323 0.08453009 0.6064 0.5442439
black:durable 0.10475086 0.06615415 1.5834 0.1133854
black:lusd -0.02103874 0.05600033 -0.3757 0.7071637
black:husd 0.24964245 0.16874707 1.4794 0.1390996
othrace:factor(dep)1 -0.85807661 0.33077992 -2.5941 0.0095115 **
othrace:factor(dep)2 0.24153715 0.13330391 1.8119 0.0700573 .
othrace:q2 0.43717264 0.34672729 1.2609 0.2074202
othrace:q3 -0.37343006 0.37701782 -0.9905 0.3219856
othrace:q4 0.41589086 0.32950089 1.2622 0.2069414
othrace:q5 0.00605385 0.31112921 0.0195 0.9844768
othrace:agelt35 0.31647921 0.18343682 1.7253 0.0845395 .
othrace:agegt54 0.30916352 0.15913988 1.9427 0.0521066 .
othrace:durable -0.19077665 0.13757582 -1.3867 0.1655946
othrace:lusd -0.09108976 0.20264053 -0.4495 0.6530804
othrace:husd 0.00516356 0.20312636 0.0254 0.9797206
factor(dep)1:q2 0.16575553 0.20084375 0.8253 0.4092430
factor(dep)2:q2 0.08749363 0.15663627 0.5586 0.5764745
factor(dep)1:q3 0.12098515 0.19967547 0.6059 0.5446028
factor(dep)2:q3 0.13964196 0.15680429 0.8905 0.3732138
factor(dep)1:q4 0.08476950 0.19909174 0.4258 0.6702857
factor(dep)2:q4 0.09099807 0.15685510 0.5801 0.5618457
factor(dep)1:q5 0.11045395 0.19829410 0.5570 0.5775381
factor(dep)2:q5 0.09599502 0.15542385 0.6176 0.5368449
factor(dep)1:q6 0.10069661 0.20903291 0.4817 0.6300216
factor(dep)2:q6 0.04840278 0.16392190 0.2953 0.7677926
factor(dep)1:agelt35 -0.07372986 0.04856221 -1.5183 0.1290132
factor(dep)2:agelt35 -0.02438958 0.03750210 -0.6504 0.5154946
factor(dep)1:agegt54 -0.08058890 0.06829342 -1.1800 0.2380409
factor(dep)2:agegt54 0.02804903 0.12779824 0.2195 0.8262859
factor(dep)1:durable -0.06027564 0.05959803 -1.0114 0.3118885
factor(dep)2:durable 0.12466452 0.05025495 2.4806 0.0131473 *
factor(dep)1:lusd 0.05896976 0.05246189 1.1240 0.2610461
factor(dep)2:lusd 0.05157515 0.04708540 1.0954 0.2734147
factor(dep)1:husd -0.04332567 0.05587546 -0.7754 0.4381417
factor(dep)2:husd -0.08820323 0.04775494 -1.8470 0.0648067 .
q2:agelt35 0.12754085 0.13321346 0.9574 0.3384031
q2:agegt54 0.52955745 0.13686983 3.8691 0.0001106 ***
q2:durable 0.12611989 0.16953217 0.7439 0.4569544
q2:lusd -0.07617774 0.07121471 -1.0697 0.2848100
q2:husd -0.01882666 0.07542000 -0.2496 0.8028882
q3:agelt35 0.13059171 0.13296592 0.9821 0.3260764
q3:agegt54 0.47820240 0.13404885 3.5674 0.0003640 ***
q3:durable 0.05420566 0.16940199 0.3200 0.7489950
q3:lusd -0.05379374 0.06990174 -0.7696 0.4415960
q3:husd -0.06007985 0.07486872 -0.8025 0.4223197
q4:agelt35 0.13100899 0.13279101 0.9866 0.3238962
q4:agegt54 0.54033014 0.13143961 4.1109 4.005e-05 ***
q4:durable 0.09625171 0.16983764 0.5667 0.5709246
q4:lusd -0.10342038 0.07052957 -1.4663 0.1426184
q4:husd -0.17191877 0.07455451 -2.3059 0.0211543 *
q5:agelt35 0.07077473 0.13203088 0.5360 0.5919501
q5:agegt54 0.44377887 0.13056413 3.3989 0.0006818 ***
q5:durable 0.07466571 0.16765628 0.4453 0.6560862
q5:lusd -0.07611869 0.07005218 -1.0866 0.2772661
q5:husd -0.16162391 0.07301750 -2.2135 0.0269085 *
q6:agelt35 0.17030213 0.13886226 1.2264 0.2201021
q6:agegt54 0.56552338 0.15041890 3.7597 0.0001721 ***
q6:durable 0.25578701 0.17834228 1.4342 0.1515642
agelt35:durable 0.00948986 0.04062983 0.2336 0.8153294
agelt35:lusd -0.02586155 0.03541632 -0.7302 0.4652926
agelt35:husd 0.03548765 0.03973732 0.8931 0.3718702
agegt54:durable -0.06231416 0.06390387 -0.9751 0.3295462
agegt54:lusd -0.03662895 0.05793021 -0.6323 0.5272235
agegt54:husd -0.07421790 0.06125689 -1.2116 0.2257288
durable:lusd -0.05517360 0.04342256 -1.2706 0.2039228
durable:husd -0.00016918 0.05273588 -0.0032 0.9974404
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We see that that even though this is a randomized experiment, balance conditions are failed.
6.3. Model Specification#
# model specifications
# no adjustment (2-sample approach)
formula_cl <- log(inuidur1) ~ T4
# adding controls
formula_cra <- log(inuidur1) ~ T4 + (female + black + othrace + factor(dep) +
q2 + q3 + q4 + q5 + q6 + agelt35 +agegt54 + durable +lusd + husd )^2
# Omitted dummies: q1, nondurable, muld
ols.cl <- lm(formula_cl, data = Penn)
ols.cra <- lm(formula_cra, data = Penn)
ols.cl = coeftest(ols.cl, vcov = vcovHC(ols.cl, type="HC1"))
ols.cra = coeftest(ols.cra, vcov = vcovHC(ols.cra, type="HC1"))
tidy(ols.cl)
tidy(ols.cra)
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
<chr> | <dbl> | <dbl> | <dbl> | <dbl> |
(Intercept) | 2.05682971 | 0.02095476 | 98.155713 | 0.00000000 |
T4TRUE | -0.08545541 | 0.03585569 | -2.383315 | 0.01719391 |
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
<chr> | <dbl> | <dbl> | <dbl> | <dbl> |
(Intercept) | 2.63308058 | 0.36809947 | 7.1531767 | 9.706770e-13 |
T4TRUE | -0.07968012 | 0.03559092 | -2.2387766 | 2.521432e-02 |
female | -0.11460926 | 0.31639042 | -0.3622400 | 7.171880e-01 |
black | -0.89902649 | 0.24024626 | -3.7421040 | 1.845347e-04 |
othrace | -2.62692161 | 0.45415507 | -5.7841953 | 7.729399e-09 |
factor(dep)1 | -0.71969778 | 0.58121824 | -1.2382574 | 2.156788e-01 |
factor(dep)2 | -0.04055836 | 0.35983953 | -0.1127124 | 9.102631e-01 |
q2 | -0.15966999 | 0.37043166 | -0.4310376 | 6.664596e-01 |
q3 | -0.53989061 | 0.37007942 | -1.4588507 | 1.446691e-01 |
q4 | -0.43335396 | 0.37119426 | -1.1674587 | 2.430809e-01 |
q5 | -0.34524113 | 0.36886953 | -0.9359438 | 3.493474e-01 |
q6 | -0.49367729 | 0.37119655 | -1.3299620 | 1.835915e-01 |
agelt35 | -0.62586241 | 0.30753420 | -2.0350986 | 4.189365e-02 |
agegt54 | -0.36137313 | 0.71234128 | -0.5073034 | 6.119644e-01 |
durable | -0.27922898 | 0.49151635 | -0.5680970 | 5.699946e-01 |
lusd | -0.22287017 | 0.18725950 | -1.1901675 | 2.340371e-01 |
husd | -0.17018519 | 0.20097701 | -0.8467894 | 3.971531e-01 |
female:black | -0.15495072 | 0.12190711 | -1.2710557 | 2.037680e-01 |
female:othrace | 0.31020732 | 0.42359960 | 0.7323126 | 4.640122e-01 |
female:factor(dep)1 | -0.02787782 | 0.11750120 | -0.2372556 | 8.124682e-01 |
female:factor(dep)2 | 0.14815022 | 0.10289219 | 1.4398587 | 1.499700e-01 |
female:q2 | -0.08741017 | 0.31593476 | -0.2766716 | 7.820437e-01 |
female:q3 | 0.20487663 | 0.31575477 | 0.6488473 | 5.164669e-01 |
female:q4 | 0.27319290 | 0.31552433 | 0.8658378 | 3.866207e-01 |
female:q5 | 0.06114805 | 0.31475173 | 0.1942739 | 8.459693e-01 |
female:q6 | 0.28721990 | 0.33836991 | 0.8488341 | 3.960143e-01 |
female:agelt35 | 0.12638618 | 0.07712465 | 1.6387261 | 1.013333e-01 |
female:agegt54 | 0.03996642 | 0.12730239 | 0.3139487 | 7.535731e-01 |
female:durable | 0.06800195 | 0.10982362 | 0.6191924 | 5.358179e-01 |
female:lusd | 0.08374007 | 0.08494090 | 0.9858627 | 3.242482e-01 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
q2:agegt54 | 0.67121854 | 0.70879486 | 0.9469856 | 0.34369192 |
q2:durable | -0.10641283 | 0.48764157 | -0.2182194 | 0.82726711 |
q2:lusd | -0.04279247 | 0.18957620 | -0.2257270 | 0.82142298 |
q2:husd | -0.04166835 | 0.19687813 | -0.2116454 | 0.83239231 |
q3:agelt35 | 0.45449799 | 0.30738644 | 1.4785883 | 0.13931345 |
q3:agegt54 | 0.86600818 | 0.70915532 | 1.2211827 | 0.22207451 |
q3:durable | 0.24499851 | 0.48719509 | 0.5028756 | 0.61507392 |
q3:lusd | 0.08586741 | 0.18721407 | 0.4586589 | 0.64649906 |
q3:husd | 0.17030374 | 0.19683494 | 0.8652109 | 0.38696460 |
q4:agelt35 | 0.38822344 | 0.30732383 | 1.2632390 | 0.20656227 |
q4:agegt54 | 0.55533438 | 0.70744223 | 0.7849890 | 0.43249724 |
q4:durable | 0.21733822 | 0.49110821 | 0.4425465 | 0.65811295 |
q4:lusd | -0.09500584 | 0.18830290 | -0.5045373 | 0.61390608 |
q4:husd | -0.12060827 | 0.19915192 | -0.6056094 | 0.54480168 |
q5:agelt35 | 0.27795870 | 0.30602492 | 0.9082878 | 0.36377001 |
q5:agegt54 | 0.45145164 | 0.70619808 | 0.6392706 | 0.52267625 |
q5:durable | 0.28812900 | 0.48721766 | 0.5913764 | 0.55429504 |
q5:lusd | -0.10402235 | 0.18908115 | -0.5501466 | 0.58224345 |
q5:husd | -0.15233600 | 0.19691991 | -0.7735937 | 0.43920770 |
q6:agelt35 | 0.33811077 | 0.33272643 | 1.0161825 | 0.30959171 |
q6:agegt54 | 0.94934693 | 0.72897660 | 1.3023010 | 0.19287356 |
q6:durable | 0.40916723 | 0.50818373 | 0.8051561 | 0.42076793 |
agelt35:durable | 0.02527879 | 0.10150649 | 0.2490362 | 0.80334302 |
agelt35:lusd | -0.06527572 | 0.08831815 | -0.7390975 | 0.45988254 |
agelt35:husd | 0.05771190 | 0.10184206 | 0.5666803 | 0.57095684 |
agegt54:durable | 0.03198905 | 0.16583044 | 0.1929022 | 0.84704343 |
agegt54:lusd | -0.14816240 | 0.13744208 | -1.0779988 | 0.28108634 |
agegt54:husd | -0.30154665 | 0.15375360 | -1.9612331 | 0.04990731 |
durable:lusd | 0.11578319 | 0.11005470 | 1.0520513 | 0.29282689 |
durable:husd | 0.23764114 | 0.12901037 | 1.8420313 | 0.06552981 |
The interactive specificaiton corresponds to the approach introduced in Lin (2013).
#interactive regression model;
X = model.matrix ( ~ (female + black + othrace + factor(dep) +
q2 + q3 + q4 + q5 + q6 + agelt35 + agegt54 + durable + lusd + husd)^2)[,-1]
dim(X)
demean<- function(x){ x - mean(x)}
X = apply(X, 2, demean)
ols_ira = lm(log(inuidur1) ~ T4*X)
ols_ira= coeftest(ols_ira, vcov = vcovHC(ols_ira, type="HC1"))
tidy(ols_ira)
- 5099
- 119
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
<chr> | <dbl> | <dbl> | <dbl> | <dbl> |
(Intercept) | 2.05761308 | 0.02077237 | 99.05527109 | 0.000000e+00 |
T4TRUE | -0.07550055 | 0.03560489 | -2.12051040 | 3.401317e-02 |
Xfemale | -0.66628233 | 0.40902136 | -1.62896709 | 1.033843e-01 |
Xblack | -0.86348620 | 0.29766982 | -2.90081876 | 3.738472e-03 |
Xothrace | -3.81768810 | 0.93891012 | -4.06608473 | 4.856015e-05 |
Xfactor(dep)1 | 0.03592643 | 0.64926578 | 0.05533393 | 9.558747e-01 |
Xfactor(dep)2 | 0.21175557 | 0.45232670 | 0.46814740 | 6.397000e-01 |
Xq2 | -0.25464364 | 0.45645285 | -0.55787502 | 5.769552e-01 |
Xq3 | -0.62123263 | 0.45607674 | -1.36212303 | 1.732217e-01 |
Xq4 | -0.47992691 | 0.45723626 | -1.04962565 | 2.939421e-01 |
Xq5 | -0.37186746 | 0.45499834 | -0.81729410 | 4.138001e-01 |
Xq6 | -0.67704739 | 0.45325585 | -1.49374218 | 1.353075e-01 |
Xagelt35 | -0.67770538 | 0.41036858 | -1.65145534 | 9.870976e-02 |
Xagegt54 | -0.30410918 | 0.70232279 | -0.43300486 | 6.650303e-01 |
Xdurable | -0.83800816 | 0.59780754 | -1.40180260 | 1.610376e-01 |
Xlusd | -0.09948902 | 0.22848318 | -0.43543258 | 6.632677e-01 |
Xhusd | -0.06264193 | 0.23548601 | -0.26601127 | 7.902417e-01 |
Xfemale:black | -0.21547992 | 0.15087950 | -1.42815910 | 1.533099e-01 |
Xfemale:othrace | 0.59943867 | 0.56394269 | 1.06294252 | 2.878604e-01 |
Xfemale:factor(dep)1 | -0.17342448 | 0.14222988 | -1.21932523 | 2.227795e-01 |
Xfemale:factor(dep)2 | 0.21664171 | 0.12664550 | 1.71061508 | 8.721554e-02 |
Xfemale:q2 | 0.39188855 | 0.40767215 | 0.96128361 | 3.364571e-01 |
Xfemale:q3 | 0.68503908 | 0.40733779 | 1.68174697 | 9.268169e-02 |
Xfemale:q4 | 0.72136790 | 0.40714421 | 1.77177491 | 7.649412e-02 |
Xfemale:q5 | 0.56577628 | 0.40577292 | 1.39431748 | 1.632850e-01 |
Xfemale:q6 | 0.90816973 | 0.43147278 | 2.10481349 | 3.535838e-02 |
Xfemale:agelt35 | 0.17007540 | 0.09529775 | 1.78467387 | 7.437613e-02 |
Xfemale:agegt54 | 0.23575096 | 0.16051680 | 1.46869959 | 1.419785e-01 |
Xfemale:durable | 0.09741318 | 0.13795391 | 0.70612846 | 4.801419e-01 |
Xfemale:lusd | 0.07200772 | 0.10678103 | 0.67434937 | 5.001211e-01 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
T4TRUE:Xq2:agelt35 | -0.301665476 | 0.6517732 | -0.462838087 | 0.64350100 |
T4TRUE:Xq2:agegt54 | 0.114639342 | 0.5672954 | 0.202080509 | 0.83986218 |
T4TRUE:Xq2:durable | -0.516827505 | 0.7780445 | -0.664264703 | 0.50655219 |
T4TRUE:Xq2:lusd | 0.165773320 | 0.4309371 | 0.384680981 | 0.70049050 |
T4TRUE:Xq2:husd | 0.532257575 | 0.4617869 | 1.152604360 | 0.24912908 |
T4TRUE:Xq3:agelt35 | -0.225663605 | 0.6520806 | -0.346067031 | 0.72930721 |
T4TRUE:Xq3:agegt54 | -0.193722861 | 0.5659725 | -0.342283187 | 0.73215248 |
T4TRUE:Xq3:durable | -0.849033377 | 0.7822032 | -1.085438330 | 0.27778100 |
T4TRUE:Xq3:lusd | 0.314719307 | 0.4225769 | 0.744762296 | 0.45645118 |
T4TRUE:Xq3:husd | 0.311301439 | 0.4634820 | 0.671658129 | 0.50183305 |
T4TRUE:Xq4:agelt35 | -0.134792991 | 0.6512222 | -0.206984641 | 0.83603046 |
T4TRUE:Xq4:agegt54 | 0.352913656 | 0.5502729 | 0.641342975 | 0.52132989 |
T4TRUE:Xq4:durable | -0.628083141 | 0.7948229 | -0.790217764 | 0.42943888 |
T4TRUE:Xq4:lusd | 0.302349224 | 0.4223630 | 0.715851553 | 0.47411715 |
T4TRUE:Xq4:husd | 0.302876538 | 0.4690497 | 0.645723827 | 0.51848849 |
T4TRUE:Xq5:agelt35 | 0.096951649 | 0.6493474 | 0.149306284 | 0.88131811 |
T4TRUE:Xq5:agegt54 | 0.482271378 | 0.5557568 | 0.867774136 | 0.38556052 |
T4TRUE:Xq5:durable | -1.239607497 | 0.7855332 | -1.578045962 | 0.11461965 |
T4TRUE:Xq5:lusd | 0.615845077 | 0.4260090 | 1.445615158 | 0.14834918 |
T4TRUE:Xq5:husd | 0.294625460 | 0.4633891 | 0.635805799 | 0.52493272 |
T4TRUE:Xq6:agelt35 | -0.001044032 | 0.7295168 | -0.001431128 | 0.99885818 |
T4TRUE:Xq6:durable | -1.365249811 | 0.8496439 | -1.606849354 | 0.10815190 |
T4TRUE:Xagelt35:durable | 0.143948477 | 0.2229223 | 0.645733914 | 0.51848195 |
T4TRUE:Xagelt35:lusd | -0.013860069 | 0.1899414 | -0.072970247 | 0.94183277 |
T4TRUE:Xagelt35:husd | 0.029405619 | 0.2174912 | 0.135203718 | 0.89245637 |
T4TRUE:Xagegt54:durable | 0.544931584 | 0.3430590 | 1.588448479 | 0.11224953 |
T4TRUE:Xagegt54:lusd | -0.579361484 | 0.2877536 | -2.013394456 | 0.04412777 |
T4TRUE:Xagegt54:husd | 0.191048615 | 0.3277012 | 0.582996413 | 0.55992257 |
T4TRUE:Xdurable:lusd | -0.374439530 | 0.2400369 | -1.559924845 | 0.11884227 |
T4TRUE:Xdurable:husd | -0.338109614 | 0.2774443 | -1.218657845 | 0.22303280 |
Next we try out partialling out with lasso
# library(hdm)
T4 = demean(T4)
DX = model.matrix(~T4 * X)[ ,-1]
rlasso.ira = summary(rlassoEffects(DX, log(inuidur1), index = 1))
print(rlasso.ira)
[1] "Estimates and significance testing of the effect of target variables"
Estimate. Std. Error t value Pr(>|t|)
T4 -0.07889 0.03555 -2.219 0.0265 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
6.4. Results#
# glimpse(ols_ira)
ols_ira[2,1]
# library(xtable)
table<- matrix(0, 2, 4)
table[1,1]<- ols.cl[2,1]
table[1,2]<- ols.cra[2,1]
table[1,3]<- ols_ira[2,1]
table[1,4]<- rlasso.ira[[1]][1]
table[2,1]<- ols.cl[2,2]
table[2,2]<- ols.cra[2,2]
table[2,3]<- ols_ira[2,2]
table[2,4]<- rlasso.ira[[1]][2]
colnames(table)<- c("CL","CRA","IRA", "IRA w Lasso")
rownames(table)<- c("estimate", "standard error")
# tab<- xtable(table, digits=5)
table
CL | CRA | IRA | IRA w Lasso | |
---|---|---|---|---|
estimate | -0.08545541 | -0.07968012 | -0.07550055 | -0.07888608 |
standard error | 0.03585569 | 0.03559092 | 0.03560489 | 0.03555130 |
Treatment group 4 experiences an average decrease of about \(7.8\%\) in the length of unemployment spell.
Observe that regression estimators delivers estimates that are slighly more efficient (lower standard errors) than the simple 2 mean estimator, but essentially all methods have very similar standard errors. From IRA results we also see that there is not any statistically detectable heterogeneity. We also see the regression estimators offer slightly lower estimates – these difference occur perhaps to due minor imbalance in the treatment allocation, which the regression estimators try to correct.