6. Analyzing RCT reemployment experiment#
6.1. Data#
In this lab, we analyze the Pennsylvania re-employment bonus experiment, which was previously studied in “Sequential testing of duration data: the case of the Pennsylvania ‘reemployment bonus’ experiment” (Bilias, 2000), among others. These experiments were conducted in the 1980s by the U.S. Department of Labor to test the incentive effects of alternative compensation schemes for unemployment insurance (UI). In these experiments, UI claimants were randomly assigned either to a control group or one of five treatment groups. Actually, there are six treatment groups in the experiments. Here we focus on treatment group 4, but feel free to explore other treatment groups. In the control group the current rules of the UI applied. Individuals in the treatment groups were offered a cash bonus if they found a job within some pre-specified period of time (qualification period), provided that the job was retained for a specified duration. The treatments differed in the level of the bonus, the length of the qualification period, and whether the bonus was declining over time in the qualification period; see http://qed.econ.queensu.ca/jae/2000-v15.6/bilias/readme.b.txt for further details on data.
# install.packages("librarian", quiet = T)
librarian::shelf(tidyverse, lmtest, sandwich, broom, hdm, quiet = T)
## loading the data
Penn <- as_tibble(read.table("https://github.com/d2cml-ai/14.388_r/raw/main/Data/penn_jae.dat", header=T ))
n <- dim(Penn)[1]
p_1 <- dim(Penn)[2]
Penn <- filter(Penn, tg == 4 | tg == 0)# subset(Penn, tg==4 | tg==0)
attach(Penn)
T4 <- (Penn$tg==4)
summary(T4)
   Mode   FALSE    TRUE 
logical    3354    1745 
glimpse(Penn)
Rows: 5,099
Columns: 23
$ abdt       <int> 10824, 10824, 10747, 10607, 10831, 10845, 10831, 10859, 105…
$ tg         <int> 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0,…
$ inuidur1   <int> 18, 1, 27, 9, 27, 27, 9, 27, 15, 28, 12, 22, 18, 1, 7, 18, …
$ inuidur2   <int> 18, 1, 27, 9, 27, 27, 9, 27, 15, 11, 12, 22, 18, 1, 7, 18, …
$ female     <int> 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,…
$ black      <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
$ hispanic   <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
$ othrace    <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ dep        <int> 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 0,…
$ q1         <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ q2         <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,…
$ q3         <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,…
$ q4         <int> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,…
$ q5         <int> 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,…
$ q6         <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
$ recall     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ agelt35    <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,…
$ agegt54    <int> 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,…
$ durable    <int> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,…
$ nondurable <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,…
$ lusd       <int> 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0,…
$ husd       <int> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ muld       <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,…
6.1.1. Model#
To evaluate the impact of the treatments on unemployment duration, we consider the linear regression model:
where \(Y\) is the log of duration of unemployment, \(D\) is a treatment indicators, and \(W\) is a set of controls including age group dummies, gender, race, number of dependents, quarter of the experiment, location within the state, existence of recall expectations, and type of occupation. Here \(\beta_1\) is the ATE, if the RCT assumptions hold rigorously.
We also consider interactive regression model:
where \(W\)’s are demeaned (apart from the intercept), so that \(\alpha_1\) is the ATE, if the RCT assumptions hold rigorously.
Under RCT, the projection coefficient \(\beta_1\) has the interpretation of the causal effect of the treatment on the average outcome. We thus refer to \(\beta_1\) as the average treatment effect (ATE). Note that the covariates, here are independent of the treatment \(D\), so we can identify \(\beta_1\) by just linear regression of \(Y\) on \(D\), without adding covariates. However we do add covariates in an effort to improve the precision of our estimates of the average treatment effect.
6.1.2. Analysis#
We consider
- classical 2-sample approach, no adjustment (CL) 
- classical linear regression adjustment (CRA) 
- interactive regression adjusment (IRA) 
and carry out robust inference using the estimatr R packages.
6.2. Carry out covariate balance check#
This is done using “lm_robust” command which unlike “lm” in the base command automatically does the correct Eicher-Huber-White standard errors, instead othe classical non-robus formula based on the homoscdedasticity command.
m <- lm(T4 ~ (female + black + othrace + factor(dep) + q2 +q3 + q4 +
        q5 + q6 + agelt35 + agegt54 + durable + lusd + husd)^2, data = Penn)
coeftest(m, vcov = vcovHC(m, type="HC1"))
t test of coefficients:
                        Estimate  Std. Error t value  Pr(>|t|)    
(Intercept)           0.32145725  0.16125607  1.9935 0.0462656 *  
female                0.10423328  0.13624779  0.7650 0.4442914    
black                 0.07164803  0.08288534  0.8644 0.3873969    
othrace               0.02801517  0.40496815  0.0692 0.9448502    
factor(dep)1         -0.07363340  0.20094637 -0.3664 0.7140574    
factor(dep)2         -0.10854072  0.15754307 -0.6890 0.4908810    
q2                   -0.02667937  0.16255836 -0.1641 0.8696419    
q3                   -0.00567387  0.16218178 -0.0350 0.9720934    
q4                    0.04334425  0.16233956  0.2670 0.7894821    
q5                    0.09386458  0.16157184  0.5809 0.5613028    
q6                   -0.22156423  0.15984049 -1.3862 0.1657604    
agelt35              -0.10923976  0.13323486 -0.8199 0.4123101    
agegt54              -0.43668630  0.13581268 -3.2154 0.0013111 ** 
durable              -0.12500967  0.17083793 -0.7317 0.4643590    
lusd                  0.11428653  0.06824019  1.6748 0.0940422 .  
husd                  0.09467997  0.07364116  1.2857 0.1986096    
female:black          0.08886596  0.04381635  2.0281 0.0425983 *  
female:othrace       -0.41350947  0.16481280 -2.5090 0.0121400 *  
female:factor(dep)1   0.05547519  0.04647943  1.1935 0.2327135    
female:factor(dep)2   0.04544801  0.04053454  1.1212 0.2622494    
female:q2            -0.18880964  0.13587953 -1.3895 0.1647314    
female:q3            -0.16526367  0.13565839 -1.2182 0.2231926    
female:q4            -0.17632875  0.13530942 -1.3032 0.1925829    
female:q5            -0.20321654  0.13480991 -1.5074 0.1317636    
female:q6            -0.04271603  0.14234389 -0.3001 0.7641207    
female:agelt35        0.07342181  0.03004676  2.4436 0.0145765 *  
female:agegt54        0.02612867  0.05090915  0.5132 0.6078053    
female:durable        0.01975687  0.04372711  0.4518 0.6514168    
female:lusd           0.00206955  0.03395251  0.0610 0.9513982    
female:husd           0.01178851  0.03747209  0.3146 0.7530827    
black:factor(dep)1   -0.11726334  0.06797874 -1.7250 0.0845893 .  
black:factor(dep)2   -0.02222434  0.06342353 -0.3504 0.7260446    
black:q2             -0.03349395  0.08989631 -0.3726 0.7094737    
black:q3             -0.19656696  0.08506268 -2.3108 0.0208818 *  
black:q4             -0.12493576  0.08604499 -1.4520 0.1465694    
black:q5             -0.20988793  0.08398490 -2.4991 0.0124822 *  
black:agelt35         0.06226414  0.04512447  1.3798 0.1677004    
black:agegt54         0.05126323  0.08453009  0.6064 0.5442439    
black:durable         0.10475086  0.06615415  1.5834 0.1133854    
black:lusd           -0.02103874  0.05600033 -0.3757 0.7071637    
black:husd            0.24964245  0.16874707  1.4794 0.1390996    
othrace:factor(dep)1 -0.85807661  0.33077992 -2.5941 0.0095115 ** 
othrace:factor(dep)2  0.24153715  0.13330391  1.8119 0.0700573 .  
othrace:q2            0.43717264  0.34672729  1.2609 0.2074202    
othrace:q3           -0.37343006  0.37701782 -0.9905 0.3219856    
othrace:q4            0.41589086  0.32950089  1.2622 0.2069414    
othrace:q5            0.00605385  0.31112921  0.0195 0.9844768    
othrace:agelt35       0.31647921  0.18343682  1.7253 0.0845395 .  
othrace:agegt54       0.30916352  0.15913988  1.9427 0.0521066 .  
othrace:durable      -0.19077665  0.13757582 -1.3867 0.1655946    
othrace:lusd         -0.09108976  0.20264053 -0.4495 0.6530804    
othrace:husd          0.00516356  0.20312636  0.0254 0.9797206    
factor(dep)1:q2       0.16575553  0.20084375  0.8253 0.4092430    
factor(dep)2:q2       0.08749363  0.15663627  0.5586 0.5764745    
factor(dep)1:q3       0.12098515  0.19967547  0.6059 0.5446028    
factor(dep)2:q3       0.13964196  0.15680429  0.8905 0.3732138    
factor(dep)1:q4       0.08476950  0.19909174  0.4258 0.6702857    
factor(dep)2:q4       0.09099807  0.15685510  0.5801 0.5618457    
factor(dep)1:q5       0.11045395  0.19829410  0.5570 0.5775381    
factor(dep)2:q5       0.09599502  0.15542385  0.6176 0.5368449    
factor(dep)1:q6       0.10069661  0.20903291  0.4817 0.6300216    
factor(dep)2:q6       0.04840278  0.16392190  0.2953 0.7677926    
factor(dep)1:agelt35 -0.07372986  0.04856221 -1.5183 0.1290132    
factor(dep)2:agelt35 -0.02438958  0.03750210 -0.6504 0.5154946    
factor(dep)1:agegt54 -0.08058890  0.06829342 -1.1800 0.2380409    
factor(dep)2:agegt54  0.02804903  0.12779824  0.2195 0.8262859    
factor(dep)1:durable -0.06027564  0.05959803 -1.0114 0.3118885    
factor(dep)2:durable  0.12466452  0.05025495  2.4806 0.0131473 *  
factor(dep)1:lusd     0.05896976  0.05246189  1.1240 0.2610461    
factor(dep)2:lusd     0.05157515  0.04708540  1.0954 0.2734147    
factor(dep)1:husd    -0.04332567  0.05587546 -0.7754 0.4381417    
factor(dep)2:husd    -0.08820323  0.04775494 -1.8470 0.0648067 .  
q2:agelt35            0.12754085  0.13321346  0.9574 0.3384031    
q2:agegt54            0.52955745  0.13686983  3.8691 0.0001106 ***
q2:durable            0.12611989  0.16953217  0.7439 0.4569544    
q2:lusd              -0.07617774  0.07121471 -1.0697 0.2848100    
q2:husd              -0.01882666  0.07542000 -0.2496 0.8028882    
q3:agelt35            0.13059171  0.13296592  0.9821 0.3260764    
q3:agegt54            0.47820240  0.13404885  3.5674 0.0003640 ***
q3:durable            0.05420566  0.16940199  0.3200 0.7489950    
q3:lusd              -0.05379374  0.06990174 -0.7696 0.4415960    
q3:husd              -0.06007985  0.07486872 -0.8025 0.4223197    
q4:agelt35            0.13100899  0.13279101  0.9866 0.3238962    
q4:agegt54            0.54033014  0.13143961  4.1109 4.005e-05 ***
q4:durable            0.09625171  0.16983764  0.5667 0.5709246    
q4:lusd              -0.10342038  0.07052957 -1.4663 0.1426184    
q4:husd              -0.17191877  0.07455451 -2.3059 0.0211543 *  
q5:agelt35            0.07077473  0.13203088  0.5360 0.5919501    
q5:agegt54            0.44377887  0.13056413  3.3989 0.0006818 ***
q5:durable            0.07466571  0.16765628  0.4453 0.6560862    
q5:lusd              -0.07611869  0.07005218 -1.0866 0.2772661    
q5:husd              -0.16162391  0.07301750 -2.2135 0.0269085 *  
q6:agelt35            0.17030213  0.13886226  1.2264 0.2201021    
q6:agegt54            0.56552338  0.15041890  3.7597 0.0001721 ***
q6:durable            0.25578701  0.17834228  1.4342 0.1515642    
agelt35:durable       0.00948986  0.04062983  0.2336 0.8153294    
agelt35:lusd         -0.02586155  0.03541632 -0.7302 0.4652926    
agelt35:husd          0.03548765  0.03973732  0.8931 0.3718702    
agegt54:durable      -0.06231416  0.06390387 -0.9751 0.3295462    
agegt54:lusd         -0.03662895  0.05793021 -0.6323 0.5272235    
agegt54:husd         -0.07421790  0.06125689 -1.2116 0.2257288    
durable:lusd         -0.05517360  0.04342256 -1.2706 0.2039228    
durable:husd         -0.00016918  0.05273588 -0.0032 0.9974404    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
We see that that even though this is a randomized experiment, balance conditions are failed.
6.3. Model Specification#
# model specifications
# no adjustment (2-sample approach)
formula_cl <- log(inuidur1) ~ T4
# adding controls
formula_cra <- log(inuidur1) ~ T4 + (female + black + othrace + factor(dep) +
              q2 + q3 + q4 + q5 + q6 + agelt35 +agegt54 + durable +lusd + husd )^2
# Omitted dummies: q1, nondurable, muld
ols.cl <- lm(formula_cl, data = Penn)
ols.cra <- lm(formula_cra, data = Penn)
ols.cl = coeftest(ols.cl, vcov = vcovHC(ols.cl, type="HC1"))
ols.cra = coeftest(ols.cra, vcov = vcovHC(ols.cra, type="HC1"))
tidy(ols.cl)
tidy(ols.cra)
| term | estimate | std.error | statistic | p.value | 
|---|---|---|---|---|
| <chr> | <dbl> | <dbl> | <dbl> | <dbl> | 
| (Intercept) | 2.05682971 | 0.02095476 | 98.155713 | 0.00000000 | 
| T4TRUE | -0.08545541 | 0.03585569 | -2.383315 | 0.01719391 | 
| term | estimate | std.error | statistic | p.value | 
|---|---|---|---|---|
| <chr> | <dbl> | <dbl> | <dbl> | <dbl> | 
| (Intercept) | 2.63308058 | 0.36809947 | 7.1531767 | 9.706770e-13 | 
| T4TRUE | -0.07968012 | 0.03559092 | -2.2387766 | 2.521432e-02 | 
| female | -0.11460926 | 0.31639042 | -0.3622400 | 7.171880e-01 | 
| black | -0.89902649 | 0.24024626 | -3.7421040 | 1.845347e-04 | 
| othrace | -2.62692161 | 0.45415507 | -5.7841953 | 7.729399e-09 | 
| factor(dep)1 | -0.71969778 | 0.58121824 | -1.2382574 | 2.156788e-01 | 
| factor(dep)2 | -0.04055836 | 0.35983953 | -0.1127124 | 9.102631e-01 | 
| q2 | -0.15966999 | 0.37043166 | -0.4310376 | 6.664596e-01 | 
| q3 | -0.53989061 | 0.37007942 | -1.4588507 | 1.446691e-01 | 
| q4 | -0.43335396 | 0.37119426 | -1.1674587 | 2.430809e-01 | 
| q5 | -0.34524113 | 0.36886953 | -0.9359438 | 3.493474e-01 | 
| q6 | -0.49367729 | 0.37119655 | -1.3299620 | 1.835915e-01 | 
| agelt35 | -0.62586241 | 0.30753420 | -2.0350986 | 4.189365e-02 | 
| agegt54 | -0.36137313 | 0.71234128 | -0.5073034 | 6.119644e-01 | 
| durable | -0.27922898 | 0.49151635 | -0.5680970 | 5.699946e-01 | 
| lusd | -0.22287017 | 0.18725950 | -1.1901675 | 2.340371e-01 | 
| husd | -0.17018519 | 0.20097701 | -0.8467894 | 3.971531e-01 | 
| female:black | -0.15495072 | 0.12190711 | -1.2710557 | 2.037680e-01 | 
| female:othrace | 0.31020732 | 0.42359960 | 0.7323126 | 4.640122e-01 | 
| female:factor(dep)1 | -0.02787782 | 0.11750120 | -0.2372556 | 8.124682e-01 | 
| female:factor(dep)2 | 0.14815022 | 0.10289219 | 1.4398587 | 1.499700e-01 | 
| female:q2 | -0.08741017 | 0.31593476 | -0.2766716 | 7.820437e-01 | 
| female:q3 | 0.20487663 | 0.31575477 | 0.6488473 | 5.164669e-01 | 
| female:q4 | 0.27319290 | 0.31552433 | 0.8658378 | 3.866207e-01 | 
| female:q5 | 0.06114805 | 0.31475173 | 0.1942739 | 8.459693e-01 | 
| female:q6 | 0.28721990 | 0.33836991 | 0.8488341 | 3.960143e-01 | 
| female:agelt35 | 0.12638618 | 0.07712465 | 1.6387261 | 1.013333e-01 | 
| female:agegt54 | 0.03996642 | 0.12730239 | 0.3139487 | 7.535731e-01 | 
| female:durable | 0.06800195 | 0.10982362 | 0.6191924 | 5.358179e-01 | 
| female:lusd | 0.08374007 | 0.08494090 | 0.9858627 | 3.242482e-01 | 
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | 
| q2:agegt54 | 0.67121854 | 0.70879486 | 0.9469856 | 0.34369192 | 
| q2:durable | -0.10641283 | 0.48764157 | -0.2182194 | 0.82726711 | 
| q2:lusd | -0.04279247 | 0.18957620 | -0.2257270 | 0.82142298 | 
| q2:husd | -0.04166835 | 0.19687813 | -0.2116454 | 0.83239231 | 
| q3:agelt35 | 0.45449799 | 0.30738644 | 1.4785883 | 0.13931345 | 
| q3:agegt54 | 0.86600818 | 0.70915532 | 1.2211827 | 0.22207451 | 
| q3:durable | 0.24499851 | 0.48719509 | 0.5028756 | 0.61507392 | 
| q3:lusd | 0.08586741 | 0.18721407 | 0.4586589 | 0.64649906 | 
| q3:husd | 0.17030374 | 0.19683494 | 0.8652109 | 0.38696460 | 
| q4:agelt35 | 0.38822344 | 0.30732383 | 1.2632390 | 0.20656227 | 
| q4:agegt54 | 0.55533438 | 0.70744223 | 0.7849890 | 0.43249724 | 
| q4:durable | 0.21733822 | 0.49110821 | 0.4425465 | 0.65811295 | 
| q4:lusd | -0.09500584 | 0.18830290 | -0.5045373 | 0.61390608 | 
| q4:husd | -0.12060827 | 0.19915192 | -0.6056094 | 0.54480168 | 
| q5:agelt35 | 0.27795870 | 0.30602492 | 0.9082878 | 0.36377001 | 
| q5:agegt54 | 0.45145164 | 0.70619808 | 0.6392706 | 0.52267625 | 
| q5:durable | 0.28812900 | 0.48721766 | 0.5913764 | 0.55429504 | 
| q5:lusd | -0.10402235 | 0.18908115 | -0.5501466 | 0.58224345 | 
| q5:husd | -0.15233600 | 0.19691991 | -0.7735937 | 0.43920770 | 
| q6:agelt35 | 0.33811077 | 0.33272643 | 1.0161825 | 0.30959171 | 
| q6:agegt54 | 0.94934693 | 0.72897660 | 1.3023010 | 0.19287356 | 
| q6:durable | 0.40916723 | 0.50818373 | 0.8051561 | 0.42076793 | 
| agelt35:durable | 0.02527879 | 0.10150649 | 0.2490362 | 0.80334302 | 
| agelt35:lusd | -0.06527572 | 0.08831815 | -0.7390975 | 0.45988254 | 
| agelt35:husd | 0.05771190 | 0.10184206 | 0.5666803 | 0.57095684 | 
| agegt54:durable | 0.03198905 | 0.16583044 | 0.1929022 | 0.84704343 | 
| agegt54:lusd | -0.14816240 | 0.13744208 | -1.0779988 | 0.28108634 | 
| agegt54:husd | -0.30154665 | 0.15375360 | -1.9612331 | 0.04990731 | 
| durable:lusd | 0.11578319 | 0.11005470 | 1.0520513 | 0.29282689 | 
| durable:husd | 0.23764114 | 0.12901037 | 1.8420313 | 0.06552981 | 
The interactive specificaiton corresponds to the approach introduced in Lin (2013).
#interactive regression model;
X = model.matrix ( ~ (female + black + othrace + factor(dep) + 
                      q2 + q3 + q4 + q5 + q6 + agelt35 + agegt54 + durable + lusd + husd)^2)[,-1]
dim(X)
demean<- function(x){ x - mean(x)}
X = apply(X, 2, demean)
ols_ira = lm(log(inuidur1) ~ T4*X) 
ols_ira= coeftest(ols_ira, vcov = vcovHC(ols_ira, type="HC1"))
tidy(ols_ira)
- 5099
- 119
| term | estimate | std.error | statistic | p.value | 
|---|---|---|---|---|
| <chr> | <dbl> | <dbl> | <dbl> | <dbl> | 
| (Intercept) | 2.05761308 | 0.02077237 | 99.05527109 | 0.000000e+00 | 
| T4TRUE | -0.07550055 | 0.03560489 | -2.12051040 | 3.401317e-02 | 
| Xfemale | -0.66628233 | 0.40902136 | -1.62896709 | 1.033843e-01 | 
| Xblack | -0.86348620 | 0.29766982 | -2.90081876 | 3.738472e-03 | 
| Xothrace | -3.81768810 | 0.93891012 | -4.06608473 | 4.856015e-05 | 
| Xfactor(dep)1 | 0.03592643 | 0.64926578 | 0.05533393 | 9.558747e-01 | 
| Xfactor(dep)2 | 0.21175557 | 0.45232670 | 0.46814740 | 6.397000e-01 | 
| Xq2 | -0.25464364 | 0.45645285 | -0.55787502 | 5.769552e-01 | 
| Xq3 | -0.62123263 | 0.45607674 | -1.36212303 | 1.732217e-01 | 
| Xq4 | -0.47992691 | 0.45723626 | -1.04962565 | 2.939421e-01 | 
| Xq5 | -0.37186746 | 0.45499834 | -0.81729410 | 4.138001e-01 | 
| Xq6 | -0.67704739 | 0.45325585 | -1.49374218 | 1.353075e-01 | 
| Xagelt35 | -0.67770538 | 0.41036858 | -1.65145534 | 9.870976e-02 | 
| Xagegt54 | -0.30410918 | 0.70232279 | -0.43300486 | 6.650303e-01 | 
| Xdurable | -0.83800816 | 0.59780754 | -1.40180260 | 1.610376e-01 | 
| Xlusd | -0.09948902 | 0.22848318 | -0.43543258 | 6.632677e-01 | 
| Xhusd | -0.06264193 | 0.23548601 | -0.26601127 | 7.902417e-01 | 
| Xfemale:black | -0.21547992 | 0.15087950 | -1.42815910 | 1.533099e-01 | 
| Xfemale:othrace | 0.59943867 | 0.56394269 | 1.06294252 | 2.878604e-01 | 
| Xfemale:factor(dep)1 | -0.17342448 | 0.14222988 | -1.21932523 | 2.227795e-01 | 
| Xfemale:factor(dep)2 | 0.21664171 | 0.12664550 | 1.71061508 | 8.721554e-02 | 
| Xfemale:q2 | 0.39188855 | 0.40767215 | 0.96128361 | 3.364571e-01 | 
| Xfemale:q3 | 0.68503908 | 0.40733779 | 1.68174697 | 9.268169e-02 | 
| Xfemale:q4 | 0.72136790 | 0.40714421 | 1.77177491 | 7.649412e-02 | 
| Xfemale:q5 | 0.56577628 | 0.40577292 | 1.39431748 | 1.632850e-01 | 
| Xfemale:q6 | 0.90816973 | 0.43147278 | 2.10481349 | 3.535838e-02 | 
| Xfemale:agelt35 | 0.17007540 | 0.09529775 | 1.78467387 | 7.437613e-02 | 
| Xfemale:agegt54 | 0.23575096 | 0.16051680 | 1.46869959 | 1.419785e-01 | 
| Xfemale:durable | 0.09741318 | 0.13795391 | 0.70612846 | 4.801419e-01 | 
| Xfemale:lusd | 0.07200772 | 0.10678103 | 0.67434937 | 5.001211e-01 | 
| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | 
| T4TRUE:Xq2:agelt35 | -0.301665476 | 0.6517732 | -0.462838087 | 0.64350100 | 
| T4TRUE:Xq2:agegt54 | 0.114639342 | 0.5672954 | 0.202080509 | 0.83986218 | 
| T4TRUE:Xq2:durable | -0.516827505 | 0.7780445 | -0.664264703 | 0.50655219 | 
| T4TRUE:Xq2:lusd | 0.165773320 | 0.4309371 | 0.384680981 | 0.70049050 | 
| T4TRUE:Xq2:husd | 0.532257575 | 0.4617869 | 1.152604360 | 0.24912908 | 
| T4TRUE:Xq3:agelt35 | -0.225663605 | 0.6520806 | -0.346067031 | 0.72930721 | 
| T4TRUE:Xq3:agegt54 | -0.193722861 | 0.5659725 | -0.342283187 | 0.73215248 | 
| T4TRUE:Xq3:durable | -0.849033377 | 0.7822032 | -1.085438330 | 0.27778100 | 
| T4TRUE:Xq3:lusd | 0.314719307 | 0.4225769 | 0.744762296 | 0.45645118 | 
| T4TRUE:Xq3:husd | 0.311301439 | 0.4634820 | 0.671658129 | 0.50183305 | 
| T4TRUE:Xq4:agelt35 | -0.134792991 | 0.6512222 | -0.206984641 | 0.83603046 | 
| T4TRUE:Xq4:agegt54 | 0.352913656 | 0.5502729 | 0.641342975 | 0.52132989 | 
| T4TRUE:Xq4:durable | -0.628083141 | 0.7948229 | -0.790217764 | 0.42943888 | 
| T4TRUE:Xq4:lusd | 0.302349224 | 0.4223630 | 0.715851553 | 0.47411715 | 
| T4TRUE:Xq4:husd | 0.302876538 | 0.4690497 | 0.645723827 | 0.51848849 | 
| T4TRUE:Xq5:agelt35 | 0.096951649 | 0.6493474 | 0.149306284 | 0.88131811 | 
| T4TRUE:Xq5:agegt54 | 0.482271378 | 0.5557568 | 0.867774136 | 0.38556052 | 
| T4TRUE:Xq5:durable | -1.239607497 | 0.7855332 | -1.578045962 | 0.11461965 | 
| T4TRUE:Xq5:lusd | 0.615845077 | 0.4260090 | 1.445615158 | 0.14834918 | 
| T4TRUE:Xq5:husd | 0.294625460 | 0.4633891 | 0.635805799 | 0.52493272 | 
| T4TRUE:Xq6:agelt35 | -0.001044032 | 0.7295168 | -0.001431128 | 0.99885818 | 
| T4TRUE:Xq6:durable | -1.365249811 | 0.8496439 | -1.606849354 | 0.10815190 | 
| T4TRUE:Xagelt35:durable | 0.143948477 | 0.2229223 | 0.645733914 | 0.51848195 | 
| T4TRUE:Xagelt35:lusd | -0.013860069 | 0.1899414 | -0.072970247 | 0.94183277 | 
| T4TRUE:Xagelt35:husd | 0.029405619 | 0.2174912 | 0.135203718 | 0.89245637 | 
| T4TRUE:Xagegt54:durable | 0.544931584 | 0.3430590 | 1.588448479 | 0.11224953 | 
| T4TRUE:Xagegt54:lusd | -0.579361484 | 0.2877536 | -2.013394456 | 0.04412777 | 
| T4TRUE:Xagegt54:husd | 0.191048615 | 0.3277012 | 0.582996413 | 0.55992257 | 
| T4TRUE:Xdurable:lusd | -0.374439530 | 0.2400369 | -1.559924845 | 0.11884227 | 
| T4TRUE:Xdurable:husd | -0.338109614 | 0.2774443 | -1.218657845 | 0.22303280 | 
Next we try out partialling out with lasso
# library(hdm)
T4 = demean(T4)
DX = model.matrix(~T4 * X)[ ,-1]
rlasso.ira = summary(rlassoEffects(DX, log(inuidur1), index = 1))
print(rlasso.ira)
[1] "Estimates and significance testing of the effect of target variables"
   Estimate. Std. Error t value Pr(>|t|)  
T4  -0.07889    0.03555  -2.219   0.0265 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
6.4. Results#
# glimpse(ols_ira)
ols_ira[2,1]
# library(xtable)
table<- matrix(0, 2, 4)
table[1,1]<-  ols.cl[2,1]
table[1,2]<-  ols.cra[2,1]
table[1,3]<-  ols_ira[2,1]
table[1,4]<-  rlasso.ira[[1]][1]
table[2,1]<-  ols.cl[2,2]
table[2,2]<-  ols.cra[2,2]
table[2,3]<-  ols_ira[2,2]
table[2,4]<-  rlasso.ira[[1]][2]
colnames(table)<- c("CL","CRA","IRA", "IRA w Lasso")
rownames(table)<- c("estimate", "standard error")
# tab<- xtable(table, digits=5)
table
| CL | CRA | IRA | IRA w Lasso | |
|---|---|---|---|---|
| estimate | -0.08545541 | -0.07968012 | -0.07550055 | -0.07888608 | 
| standard error | 0.03585569 | 0.03559092 | 0.03560489 | 0.03555130 | 
Treatment group 4 experiences an average decrease of about \(7.8\%\) in the length of unemployment spell.
Observe that regression estimators delivers estimates that are slighly more efficient (lower standard errors) than the simple 2 mean estimator, but essentially all methods have very similar standard errors. From IRA results we also see that there is not any statistically detectable heterogeneity. We also see the regression estimators offer slightly lower estimates – these difference occur perhaps to due minor imbalance in the treatment allocation, which the regression estimators try to correct.
 
    
  
  
